我司以停产控制系统零部件、为领先优势、我们有大量库存和盈余操纵系统零件、停产的控制系统部分硬件、我们也发布了许多的硬件和产品来支持你现有的控制系统或运用最新的控制技术、停产的“DCS系统备品 备件 PLC模块 备件”整机及配件系列、有着强大的优势只要您需要的PLC产品、我们就能帮您找到。公司以“专业、 诚信、创新、合作、共赢”的经营理念、不断开发新产品、为客户提供优质服务、以最大限度追求客户满意度、并不断开拓新领域业务,充足库存,交货期快,
主营产品:各品牌DCS、PLC备件---全新渠道,卓越品质,完美折扣!
一、英维思福克斯波罗 Invensys Foxboro I/A Series系统:FBM(现场输入/输出模块)顺序控制、梯形逻辑控制、事故追忆处理、数模转换、输入/输出信号处理、数据通信及处理等。
二、英维思ESD系统 Invensys Triconex: 冗余容错控制系统、基于三重模件冗余(TMR)结构的最现代化的容错控制器。
三、ABB:Bailey INFI 90,工业机器人备件DSQC系列等。
四、西屋Westinghouse: OVATION系统、WDPF系统、WEStation系统备件。
五、霍尼韦尔Honeywell:DCS系统备件模件、HONEYWELL TDC系列, QCS,S9000等备件。
六、安川Yaskawa:伺服控制器、伺服马达、伺服驱动器。
七、罗克韦尔Allen Bradley Rockwell: 1745/1756/ 1771/ 1785、Reliance瑞恩 等产品。
八、XYCOM:XVME-103、XVME-690、VME总线等备件
九、伍德沃德Woodward:SPC阀位控制器、PEAK150数字控制器。
十、施耐德Schneider:140系列、Quantum处理器、Quantum内存卡、Quantum电源模块等。
十一、摩托罗拉Motorola:MVME 162、MVME 167、MVME1772、MVME177、VME系列。
十二、发那科FANUC:模块、卡件、驱动器等各类备件。
十三、西门子Siemens:Siemens MOORE, Siemens Simatic C1,Siemens数控系统等。
十四、博士力士乐Bosch Rexroth:Indramat,I/O模块,PLC控制器,驱动模块等。
十五、HP:工作站、服务器、HP 9000 工作站、HP 75000 系列备件、HP VXI 测试设备等。
十六、尼康NOKI:输入输出卡件、模块备件。惠普
十七、MELEC: 驱动器、驱动板、伺服驱动器、伺服控制器、马达,驱动卡等。
十八、网域Network Appliance:数据储存模块。
有着充足的库存,交货期快,库存价值大约3亿人民币,欢迎咨询
人工智能,被视为未来超级智能系统的先锋。今天,各类应用机器学习技术的分析工具已现身市场。金融、医疗、制造等行业应用发展迅速,人工智能领域的全球风投也从2012年的5.89亿美元猛增至2016年的50多亿美元。
近一两年来,中国人工智能领域的火热势头,大有东风压倒西风的趋势。世界知名咨询公司麦肯锡发布的报告预计,至2025年人工智能应用市场总值将达到1270亿美元。但同样是这家公司近期的另一项报告则表示,在人工智能这一高科技领域,中国还存在四个主要问题,有待补足。
论文多了,落地还有待时日
4月1日,艾媒咨询发布的《2017年中国人工智能产业专题研究报告》显示,中国人工智能产业规模2016年已突破百亿,以43.3%的增长率达到了100.60亿元,预计2017年增长率将提高至51.2%。
艾媒咨询分析师认为,中国人工智能产业起步相对较晚,但产业布局、技术研究等基础设施正处于进步期,随着科技、制造等业界巨头公司的布局深入,人工智能产业的规模将进一步扩大。
“1个多月前,麻省理工科技评论公布了2017年度全球十大突破技术,其中包括深度学习、刷脸支付、自动驾驶等在内的人工智能领域热门技术均被选中。可喜的是,这几项技术的主要研究者包括了科大讯飞、阿里巴巴、百度等多家中国企业,说明我国在人工智能技术研究方面已经走在了世界前列。”工业和信息化部副部长刘利华日前的CITE2017人工智能产业发展高峰论坛上表示。
根据统计数据,中国人工智能相关专利申请数从2010年开始出现持续增长,于2014年达到19197项,并于2015年开始大幅增长,达到28022项,2016年,中国人工智能相关专利年申请数为29023项。
同时,在麦肯锡全球研究院的报告中,指出学术方面,仅在2015年,中美两国在学术期刊上发表的相关论文合计近1万份,而英国、印度、德国和日本发表的学术研究文章总和也只相当于其一半。其中,中国的人工智能发展多由科技企业推动引领,如自动化私人助理、自动驾驶汽车等。
但是与人工智能发展成熟且前列的美国等相比,虽然中国在人工智能的论文数量方面超过了美国,但中国学者的研究影响力尚不及美国或英国同行,且在人工智能生态系统方面,美国也更为完善和活跃,创业公司数量远超中国。由研究机构、大学及私营企业共同组成的生态系统庞大、创新且多元。硅谷在科技领域日积月累的强劲实力,形成了强大而难以复制的优势。
数据多了,分享互通还不够
相比于美国,庞大的人口基数所产生的海量数据是中国人工智能的优势所在,广泛的行业分布为人工智能的应用提供了广阔市场。
事实上,如果单就应用层面而言,中国的算法发展程度与其他国家并无太大差距。中国在语音识别和定向广告的人工智能算法上取得了突破进展。而全球的开源平台也使得中国企业能够快速地复制其他地区开发的先进算法。
不过,尽管中国的科技巨头能够通过其专有平台获得海量数据,但在创建一个标准统一、跨平台分享的数据友好型生态系统方面,中国仍落后于美国。
在麦肯锡全球研究院的报告,中国政府数据开放度为全球第93名。全球各国都已意识到开放政府数据库有助于促进私营领域创新,但中国政府数据的开放度仍极为有限,这对跨境数据流通的限制也使得中国在全球合作中处于不利地位。
艾媒咨询指出,从目前来看,虽然相关机构的研究表明华人的人工智能学术成果占全球一半以上,但中国人工智能技术和产业在大部分领域仍落后于全球一流水平。虽然中国在数据积累和传统产业基础上有一定的优势,部分细分领域有领先成果,相关研究投入不断加大,但整体上的人才储备落后于美国,在基础研究、产业链等方面存在较大挑战,将成为制约人工智能发展的重要因素。
人才回来了,经验、总数还不足
据麦肯锡分析,就应用层面而言,中国的算法发展程度与其他国家并无太大差距。然而,中国的研究人员在基础算法研发领域仍远远落后于英美同行。一个主要原因就是人才短缺。美国半数以上的数据科学家拥有10年以上的工作经验,而在中国,超过40%的数据科学家工作经验尚不足5年。中国在人才方面的持续努力将至关重要。
据统计,在中国只有不到30所大学的研究实验室专注于人工智能,输出人才的数量远远无法满足人工智能企业的用人需求。此外,中国的人工智能科学家大多集中于计算机视觉和语音识别等领域,造成其他领域的人才相对匮乏。
“作为前沿科技技术,要推动人工智能发展的关键因素是人才和数据,而现阶段受到人才、数据和计算平台三个方面的制约。就目前来说,真正懂人工智能、深度学习的人才不多,所以导致科技巨头之间在人才争夺中不惜重金,甚至以不合理的价格疯狂挖人工智能的人才。甚至在美国硅谷给刚毕业的人工智能领域博士能开出超过百万美元的年薪。”传感物联网创建人杨剑勇说。
人工智能领域的专业人才供求失衡更严重,供求比例接近一比十,不少企业纷纷考虑在海外,特别是在北美本地招募开发、研究人员。
人才的匮乏从其薪资水平上也可以看出端倪,目前国内AI相关技术岗位,主流年薪在30—60万元。以百度为例,吴恩达宣布离开后,百度正在继续努力从美国寻找AI人才。如果AI人才愿意从美国回到中国工作,百度愿意加薪15%。