今日最新资讯
热门资讯
国内新闻
    新型感应加热技术及简介
    发布者:aaaa1978722  发布时间:2012-11-29 21:32:00  访问次数:

     在目前主流的 IGBT 式感应加热产品中,仍有较多的电路和结构方式差异。从整流单元看有可控整流方式和不可控整流方式;从逆变单元看有脉宽调制逆变方式和斩波调压逆变方式;从谐振输出单元看有并联谐振方式和串联谐振方式。各种电路和结构方式在效率、功率因数、可靠性等性能上各有差异。

      1 目前产品普遍存在的问题及原因

      虽然采用 IGBT 取代晶闸管和电子管已经取得了很大的进步,但目前大多数生产厂商研制生产的感应加热电源设备仍然存在一些普遍问题,这些问题主要表现为:

      a 效率较低、电能和冷却水消耗大b 功率元件 IGBT 容易损坏c 电抗器或输出变压器容易损坏d 冷却水回路故障较多e 功率因数较低、谐波污染大f 设备可靠连续运行性能欠佳这些问题主要是因为设计上的缺陷所致,现针对这些问题探讨其原因:

      a 由于 IGBT、电抗器、输出变压器、谐振电容器均采取水冷结构,不仅损耗较大、效率较低,冷却水消耗大,而且容易发生因为铜管结垢堵塞导致器件烧毁,也容易发生漏水导致故障范围扩大等问题;且由于水路并联支路很多,系统无法保证每一支路均具有断水保护功能。

      b 由于模拟式控制电路不能适应各种变化工况,使得功率元件IGBT 脱离过零软开关状态,因此开关损耗增加、并经常导致IGBT 过热损坏。

      c 脉宽调制型(无斩波调压)产品采用软开通、硬关断(或带缓冲的硬关断)电路,因此IGBT 损耗大,且这种方式容易脱离软开关状态导致IGBT 损坏。

      d 设备在过压、过载、感应圈短路或部分短路、功率元件过热等情况下控制电路不能起到有效限制和保护作用,导致设备损坏。

      e 并联谐振方式的设备容易发生逆变单元过压而损坏器件。

      f 控制电路抗干扰能力差,系统运行不稳定或保护限制功能容易误动作,设备可靠性差;或设备设备由于外界因素或偶然因素保护停机后不能自动重起动。

      g 整流后直接采用大容量电力电容滤波,无滤波电感或直流侧IGBT 斩波电路,因此功率因数低,输入电流谐波大;如采用电力电解电容,还有发热、串联均压问题、寿命较短等缺陷。

      2 新型数字式空冷感应加热电源的主要特点

      一种新型引进技术的 YFL 系列感应加热电源主回路如下图所示,该产品为创新的全空冷结构,在中央处理器DSP 的数字式控制下,功率器件IGBT 始终精确工作在零电流开关状态,自动重起动功能保证了设备连续运行的可靠性;与非数字式产品相比,数字式产品在各方面性能均得以提高。

      该产品的整流单元为不可控整流,且直流侧采用 IGBT 斩波调压,谐振方式为输出隔离型次级串联谐振。这种电路有效提高了设备效率和功率因数、减少输入谐波、降低IGBT损耗;使得设备可以采用全空冷结构,并消除设备来自水系统的故障;基于这种结构,设备的工作频率为1KHz-100KHz。

      2.1 准确可靠的过零软开关IGBT 逆变

      高频感应加热电源一般均采用谐振软开关控制,可以大为降低IGBT 开关损耗,且实现自动跟踪谐振频率。

      有的产品直流侧没有 IGBT 斩波电路,这是一种软开通硬关断电路,或者是带缓冲的硬关断电路。这种电路的关断损耗较大,且容易脱离软开关状态。采用直流侧IGBT 斩波电路后,可以实现完全的软开通软关断,并将开通损耗和关断损耗均降至最低。

      传统控制电路采用锁相环跟踪系统谐振频率,但谐振频率较高时,影响频率跟踪的离散参数比较突出,频率较高时,锁相环精度不够,容易出现脱离软开关的状态,因此开关损耗增大,严重时导致IGBT 损坏。因此,提高控制的准确度是保证IGBT 安全运行的前提条件。

      新型 YFL 系列感应加热电源采用DSP 进行跟踪控制,凭借DSP 的快速处理能力,可根据不同工况进行跟踪补偿,使系统准确度大幅度提高,谐振频率和相位的跟踪误差大为降低。此外,系统采用的快速IGBT 驱动电路也有助于更准确快速的高频软开关电路的实现。

免责声明:焊材网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:0571-87774297。
0571-87774297