平湖全系工字电感厂家
平湖全系工字电感厂家
产品价格:¥0.03(人民币)
  • 规格:0910工字电感
  • 发货地:广东东莞市
  • 品牌:
  • 最小起订量:1件
  • 诚信商家
    会员级别:钻石会员
    认证类型:企业认证
    企业证件:通过认证

    商铺名称:东莞市伟圣电子有限公司

    联系人:陈安龙(先生)

    联系手机:

    固定电话:

    企业邮箱:410588932@qq.com

    联系地址:东莞市长安镇上沙中强路14号

    邮编:523861

    联系我时,请说是在焊材网上看到的,谢谢!

    商品详情

      全系类工字电感现货供应,东莞市伟圣电子有限公司,我公司是一家专业的工字电感公司,销售全系列规格的工字电感、色环电感、贴片电感、贴片功率电感、贴片共模电感等电感器,有需要的客户请致电我司,或咨询QQ,可帮客户打样。

      ? 工字电感的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。工字电感一般用于电路的匹配和信号质量的控制上,一般地的连接和电源的连接,也是一种蓄能元件。色环电感与力学中的惯性相类似的特性,在电子元件取名为“电感器”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这自感现象产生很高的感应电势所造成的。


      额定电流

      ??在选择电感时,工作电流应该低于说明书中的额定电流。如果工作电流超过额定电流,就可能会损坏产品。

      ??直流电阻(DCR)

      ??Kimbro称,直流电阻(DCR)与额定电流有很大的关联。以线圈电阻为基准,直流电阻等于电感的损耗。如果绕线的直径增加,那么直流电阻会减小,而额定电流会增加。较大的绕线直径降低了损耗并改善了电流处理能力。

      ??Vishay公司电感部门的产品市场经理Doug Lillie说:“直流电阻会限制在不过热或不发生饱和(感应系数急剧降低)的情况下器件可以传输的直流电流。”

      ??自谐振频率(SRF)

      ??电感中的每一匝绕线都可以看成一块电容器极板,匝与匝之间以及线圈与铁芯之间电容的总体效果可以用与电感并联的单个电容来表示,称为分布电容(Cd)。这种并联结构的谐振频率就称为自谐振频率(SRF)。

      ??Lillie说:“在这个频率,电感看起来就像带有阻抗的纯电阻。如果频率超过自谐振频率,这种并联结构的容抗将成为主要因素。”

      ??叠层片式电感

      ??叠层片式电感是使用陶瓷材料结构通过集成工艺制成的。陶瓷材料结构可以在高频处提供很好的性能,而叠层片式工艺以提供各种各样的电感值。

      ??叠层片式器件的电感值范围要比薄膜或空芯线圈类的电感广,但是比不上线绕式元件的电感取值范围或额定电流。叠层片式技术因其很好的电特性,特别是其低廉的成本,而越来越流行。

      ??薄膜电感

      ??薄膜电感是使用光刻工艺生产的,这种工艺可以在陶瓷基底上生产出非常精确的线圈模式,从而满足苛刻的电感公差。陶瓷基板使得这些电感成为RF应用的理想元件。但是,薄膜电感能传输的电流较小,而且电感值范围有限。

      ?线绕式电感

      ??线绕式电感通常用于低频应用之中。线绕式电感是将铜线绕在陶瓷(氧化铝)磁芯上制成的。

      ??因其结构和材料的原因,线绕式电感可以提供很好的电特性。水平绕线结构使得公差很小而杂散电容很小,而铜线使得直流电阻很小,从而增加了品质因子性能以及额定电流。

      ??锥形电感

      ??锥形电感是面向宽带和高频应用的,它的结构 可以展宽线圈的带宽。锥形电感的实际尺寸较小,通常是用细线绕成的,因此杂散电容较小。

      ??在超宽带Bias-T器件中,锥形电感同时提供了直流偏置提取或注入路径,它可以将电源与有源器件隔离。

      ??磁芯的选择

      ??高频器件通常使用空心或惰性(也就是陶瓷)磁芯。它们提供了比磁性铁芯更好的热性能,但是其电感取值有限。

      ??中频器件通常采用铁芯。铁芯不会饱和,但是无法提供铁氧体磁芯那样的大电感值。低频器件通常使用铁氧体磁芯。应该尽可能地避免使用铁氧体磁芯,因为它们会在较小的Idc值处饱和,而且会受温度的影响(△L/△T)。

      ??厂商们也在开发和使用更新的铁氧体,如无定形和纳米晶体材料。电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上, 用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的 电压尖峰。

      电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和, 也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但 是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式 杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容, 则从电感的等效电路可以看出在某一频率后所呈现的电容特性。

      当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:

      1. 当电感L中有电流I流过时,电感储存的能量为:

      E=0.5×L×I2 (1)

      2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:

      V=(L×di)/dt (2)

      由此可看出,纹波电流的大小跟电感值有关。

      3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。

      计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。

      从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV

      纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。

      降压型开关电源的电感选择

      为降压型开关电源选择电感器时,需要确定最输入电压、输出电压、电源开关频率、最大纹波电流、占空比。下面以图2为例说明降压型开关电源电感值的计算,首先假设开关频率为300kHz、输入电压范围12V±10%、输出电流为1A、最纹波电流300mA

      最大输入电压值为13.2V,对应的占空比为:

      D=Vo/Vi=5/13.2=0.379 (3)

      其中,Vo为输出电压、Vi为输出电压。当开关管导通时,电感器上的电压为:

      V=Vi-Vo=8.2V (4)

      当开关管关断时,电感器上的电压为:

      V=-Vo-Vd=-5.3V (5)

      dt=D/F (6)

      把公式2/3/6代入公式2得出:

      升压型开关电源的电感选择

      于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。以图3为例进行计算,假设开关频率为 300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最纹波电流为450mA,对应的占空比为:

      D=1-Vi/Vo=1-5.5/12=0.542 (7)

      当开关管导通时,电感器上的电压为:

      V=Vi=5.5V (8)

      当开关管关断时,电感器上的电压为:

      V=Vo+Vd-Vi=6.8V (9)

      把公式6/7/8代入公式2得出

      注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容提供,因此输 出电容必须有足够大的储能容量来提供这一期间负载所需的电流。但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。

      般而言,电感值变大,输出纹波会变小,但电源的动态响应也会相应变差,所以电感值的选取可以根据电路的具体应用要求来调整以达到最理想效果。开关频率的提 高可以让电感值变小,从而让电感的物理尺寸变小,节省电路板空间,因此目前的开关电源有往高频发展的趋势,以适应电子产品的体积越来越小的要求。共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

      ??事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则La和C1,Lb和C2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。

      ??现在国内生产的一种小型共模电感,采用高频之杂讯抑制对策,共模扼流线圈结构,讯号不衰减,体积小、使用方便,具有平衡度佳、使用方便、高品质等优点。广泛使用在双平衡调音装置、多频变压器、阻抗变压器、平衡及不平衡转换变压器...等。

      ??还有一种共模滤波器电感/EMI滤波器电感采用铁氧体磁心,双线并绕,杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制,低差模噪声信号抑制干扰源,在高速信号中难以变形,体积小、使用方便,具有平衡度佳、使用方便、高品质等优点。广泛使用在抑制电子设备EMI噪音、个人电脑及外围设备的 USB线路、DVC、STB的IEEE1394线路、液晶显示面板、低压微分信号...等滤波电感整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的 直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒 L 型、LC 滤波、LCπ 型滤波和 RCπ 型滤波等)。有源滤波的主要形式是有源 RC 滤波,也被称作电子滤波电感。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。


      工字电感的感量变化来源于外加交变电源的变化,故从客观效果看,色环电感有阻止交流电路中电流变化的特性。总之,当色环电感接到交流电源上时,色环电感内部的磁力线将随电流的交变而时刻在变化着,导致色环电感产生电磁感应。

      电感器是一个电抗器件,电感器在电子电路中经常使用,将一根导线饶在铁芯上或一个空心线圈就是一个电感器。当电流通过一段导线时,在导线的周围会产生一定的电磁场,这个电磁场会对处于这个电磁场中的导线产生作用。我们将这个作用称为电磁感应。为了加强电磁感应,人们常将绝缘的导线绕成一定圈数的线圈,我们将这个线圈成为电感线圈。为了简单识别,通常将电感线圈称为电感器或者电感。

      当工字电感电流流过导线时,在导线的周围就会产生磁场,磁场的强度与线圈的圈数及电流的大小成正比,磁场发生变化时,电感会感应一电动势来阻止磁场的变化,这种性质被称为电感。若将多个电感线圈放在一起,它们之间就会互相产生影响,即构成一个变压器。电感器和变压器多是通过电磁感应的原理来工作的。

      常用的插件电感器有工字电感器和我是R棒电感、色环电感等电感器。其中工字电感器又分为卧式工字电感器和立式工字电感器两类。电感器中的线圈是导线缠绕而成的。缠绕一圈成为匝,所以线圈多有芯数的概念。一般线圈的匝数都大于1.这里的导线不是裸线,而是报有绝缘层的铜线和铝线,因此线圈的匝与匝之间是彼此绝缘的。


      在手机、RFID、测试设备、GPS、雷达、Wi-Fi以及卫星无线电等应用的高频模拟电路和信号处理中,电感是最重要的元件之一。通常,它可以承担的几项主要功能包括电路调谐、阻抗匹配、高通和低通滤波器,还可以用作RF扼流圈。

      ??选择在设计中使用RF电感的电子工程师有多种选择。为了简化这种选择,本文将讨论电感元件的各种类型及其常见用法。


      ??RF电感的用途


      ??大部分电子器件都含有RF电感。“为了跟踪动物,在我们家养动物的皮肤中植入的玻璃管内部都含有一个电感”,普莱默公司的一位研发工程师 Maria del Mar Villarrubia说,“每次启动汽车的时候两个电感之间都会产生无线通信,一个在汽车内部,另一个在钥匙内部。”


      ??不过,正如这种元件的无所不在一样,RF电感也有着非常具体的用途。在谐振电路中,这些元件通常与电容结合使用,以便选择特定的频率(如振荡电路、压控振荡器等)。


      ??RF电感也可以用于阻抗匹配应用,以便实现数据传输线的阻抗平衡。这是为了确保IC间高效的数据传输所必需的。


      ??作为RF扼流圈使用时,电感串联在电路中,起到RF滤波器的作用。简单来说,RF扼流圈是个低通滤波器,它会给较高的频率造成衰减,而较低的频率则畅通无阻。


      ??Q值是什么


      ??在讨论电感性能时,Q值是最重要的衡量指标。Q值是一种衡量电感性能的指标,它是一个无量纲的参数,用于比较振荡频率和能量损耗速率。


      ??Q值越高,电感的性能就越接近于理想的无损电感。也就是说,它在谐振电路中的选择性更好。”


      ??高Q值的另一个好处是损耗低,也就是说电感消耗的能量少。低Q值会造成带宽较宽,而且在振荡频率处及其附近的谐振幅度较低。


      ??电感值


      ??除了Q因子以外,电感的真正的量度当然是它的电感值。对于音频和电源应用而言,电感取值通常是数亨利,而高频率应用通常需要小得多的电感,通常在毫亨或微亨范围内。


      ??电感值取决于几个因素,其中包括结构、铁芯尺寸、铁芯材料以及实际的线圈匝数。电感既有电感值固定的,也有电感值可调的。


      ??其他规格


      ??电感值并不是唯一重要的取值。直流电阻、电流以及自谐振频率(SRF)是RF电感的数据单中所提供的一些更加有用的规格。


      ??del Mar Villarrubia说:“根据应用场合的不同,每种特性都可能是需要重点考虑的因素并决定其他特性。例如,如果元件将用在轮胎压力监测系统中,那么电感在很宽的温度范围内的稳定性是很重要的,而这种要求将会确定磁芯的选择。”


      ??额定电流


      ??在选择电感时,工作电流应该低于说明书中的额定电流。如果工作电流超过额定电流,就可能会损坏产品。


      ??直流电阻(DCR)


      ??Kimbro称,直流电阻(DCR)与额定电流有很大的关联。以线圈电阻为基准,直流电阻等于电感的损耗。如果绕线的直径增加,那么直流电阻会减小,而额定电流会增加。较大的绕线直径降低了损耗并改善了电流处理能力。


      ??Vishay公司电感部门的产品市场经理Doug Lillie说:“直流电阻会限制在不过热或不发生饱和(感应系数急剧降低)的情况下器件可以传输的直流电流。”


      ??自谐振频率(SRF)


      ??电感中的每一匝绕线都可以看成一块电容器极板,匝与匝之间以及线圈与铁芯之间电容的总体效果可以用与电感并联的单个电容来表示,称为分布电容(Cd)。这种并联结构的谐振频率就称为自谐振频率(SRF)。


      ??Lillie说:“在这个频率,电感看起来就像带有阻抗的纯电阻。如果频率超过自谐振频率,这种并联结构的容抗将成为主要因素。”


      ??叠层片式电感


      ??叠层片式电感是使用陶瓷材料结构通过集成工艺制成的。陶瓷材料结构可以在高频处提供很好的性能,而叠层片式工艺以提供各种各样的电感值。


      ??叠层片式器件的电感值范围要比薄膜或空芯线圈类的电感广,但是比不上线绕式元件的电感取值范围或额定电流。叠层片式技术因其很好的电特性,特别是其低廉的成本,而越来越流行。


      ??薄膜电感


      ??薄膜电感是使用光刻工艺生产的,这种工艺可以在陶瓷基底上生产出非常精确的线圈模式,从而满足苛刻的电感公差。陶瓷基板使得这些电感成为RF应用的理想元件。但是,薄膜电感能传输的电流较小,而且电感值范围有限。


      ?线绕式电感


      ??线绕式电感通常用于低频应用之中。线绕式电感是将铜线绕在陶瓷(氧化铝)磁芯上制成的。


      ??因其结构和材料的原因,线绕式电感可以提供很好的电特性。水平绕线结构使得公差很小而杂散电容很小,而铜线使得直流电阻很小,从而增加了品质因子性能以及额定电流。


      ??锥形电感


      ??锥形电感是面向宽带和高频应用的,它的结构 可以展宽线圈的带宽。锥形电感的实际尺寸较小,通常是用细线绕成的,因此杂散电容较小。


      ??在超宽带Bias-T器件中,锥形电感同时提供了直流偏置提取或注入路径,它可以将电源与有源器件隔离。


      ??磁芯的选择


      ??高频器件通常使用空心或惰性(也就是陶瓷)磁芯。它们提供了比磁性铁芯更好的热性能,但是其电感取值有限。


      ??中频器件通常采用铁芯。铁芯不会饱和,但是无法提供铁氧体磁芯那样的大电感值。低频器件通常使用铁氧体磁芯。应该尽可能地避免使用铁氧体磁芯,因为它们会在较小的Idc值处饱和,而且会受温度的影响(△L/△T)。


      ??厂商们也在开发和使用更新的铁氧体,如无定形和纳米晶体材料。电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上, 用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的 电压尖峰。


      电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和, 也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但 是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式 杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容, 则从电感的等效电路可以看出在某一频率后所呈现的电容特性。


      当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:


      1. 当电感L中有电流I流过时,电感储存的能量为:


      E=0.5×L×I2 (1)


      2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:


      V=(L×di)/dt (2)


      由此可看出,纹波电流的大小跟电感值有关。


      3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。


      计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。


      从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV

      纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。

      降压型开关电源的电感选择

      为降压型开关电源选择电感器时,需要确定最输入电压、输出电压、电源开关频率、最大纹波电流、占空比。下面以图2为例说明降压型开关电源电感值的计算,首先假设开关频率为300kHz、输入电压范围12V±10%、输出电流为1A、最纹波电流300mA

      最大输入电压值为13.2V,对应的占空比为:


      D=Vo/Vi=5/13.2=0.379 (3)

      其中,Vo为输出电压、Vi为输出电压。当开关管导通时,电感器上的电压为:


      V=Vi-Vo=8.2V (4)


      当开关管关断时,电感器上的电压为:


      V=-Vo-Vd=-5.3V (5)


      dt=D/F (6)


      把公式2/3/6代入公式2得出:





      升压型开关电源的电感选择


      于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。以图3为例进行计算,假设开关频率为 300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最纹波电流为450mA,对应的占空比为:

      D=1-Vi/Vo=1-5.5/12=0.542 (7)


      当开关管导通时,电感器上的电压为:

      V=Vi=5.5V (8)


      当开关管关断时,电感器上的电压为:

      V=Vo+Vd-Vi=6.8V (9)


      把公式6/7/8代入公式2得出




      注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容提供,因此输 出电容必须有足够大的储能容量来提供这一期间负载所需的电流。但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。



    在线询盘/留言
  • 0571-87774297