我司以停产控制系统零部件、为领先优势、我们有大量库存和盈余操纵系统零件、停产的控制系统部分硬件、我们也发布了许多的硬件和产品来支持你现有的控制系统或运用最新的控制技术、停产的“DCS系统备品 备件 PLC模块 备件”整机及配件系列、有着强大的优势只要您需要的PLC产品、我们就能帮您找到。公司以“专业、 诚信、创新、合作、共赢”的经营理念、不断开发新产品、为客户提供优质服务、以最大限度追求客户满意度、并不断开拓新领域业务,充足库存,交货期快,
主营产品:各品牌DCS、PLC备件---全新渠道,卓越品质,完美折扣!
一、英维思福克斯波罗 Invensys Foxboro I/A Series系统:FBM(现场输入/输出模块)顺序控制、梯形逻辑控制、事故追忆处理、数模转换、输入/输出信号处理、数据通信及处理等。
二、英维思ESD系统 Invensys Triconex: 冗余容错控制系统、基于三重模件冗余(TMR)结构的最现代化的容错控制器。
三、ABB:Bailey INFI 90,工业机器人备件DSQC系列等。
四、西屋Westinghouse: OVATION系统、WDPF系统、WEStation系统备件。
五、霍尼韦尔Honeywell:DCS系统备件模件、HONEYWELL TDC系列, QCS,S9000等备件。
六、安川Yaskawa:伺服控制器、伺服马达、伺服驱动器。
七、罗克韦尔Allen Bradley Rockwell: 1745/1756/ 1771/ 1785、Reliance瑞恩 等产品。
八、XYCOM:XVME-103、XVME-690、VME总线等备件
九、伍德沃德Woodward:SPC阀位控制器、PEAK150数字控制器。
十、施耐德Schneider:140系列、Quantum处理器、Quantum内存卡、Quantum电源模块等。
十一、摩托罗拉Motorola:MVME 162、MVME 167、MVME1772、MVME177、VME系列。
十二、发那科FANUC:模块、卡件、驱动器等各类备件。
十三、西门子Siemens:Siemens MOORE, Siemens Simatic C1,Siemens数控系统等。
十四、博士力士乐Bosch Rexroth:Indramat,I/O模块,PLC控制器,驱动模块等。
十五、HP:工作站、服务器、HP 9000 工作站、HP 75000 系列备件、HP VXI 测试设备等。
十六、尼康NOKI:输入输出卡件、模块备件。惠普
十七、MELEC: 驱动器、驱动板、伺服驱动器、伺服控制器、马达,驱动卡等。
十八、网域Network Appliance:数据储存模块。
有着充足的库存,交货期快,库存价值大约3亿人民币,欢迎咨询
AlphaGo之父杰米斯·哈萨比斯(Demis Hassabis)近日在母校英国剑桥大学做了一场题为“超越人类认知的极限”的演讲,解答了世人对于人工智能,对于阿尔法狗的诸多疑问——过去3000年里人类低估了棋局哪个区域的重要性?阿尔法狗去年赢了韩国职业九段李世石靠哪几个绝招?今年年初拿下数位国际大师的神秘棋手Master究竟是不是阿尔法狗?为什么围棋是人工智能难解之谜?
杰米斯·哈萨比斯,DeepMind创始人, AlphaGo之父
杰米斯·哈萨比斯,DeepMind创始人,AlphaGo(阿尔法狗)之父, 4岁开始下象棋,8岁时在棋盘上的成功促使他开始思考两个至今令他困扰的问题:第一,人脑是如何学会完成复杂任务的?第二,电脑能否做到这一点?17岁时,哈萨比斯就负责了经典模拟游戏《主题公园》的开发,并在1994年发布。他随后读完了剑桥大学计算机科学学位,2005年进入伦敦大学学院,攻读神经科学博士学位,希望了解真正的大脑究竟是如何工作的,以此促进人工智能的发展。2014年他创办公司DeepMind, 公司产品阿尔法狗在2016年大战围棋冠军李世石事件上一举成名。
哈萨比斯在当天的演讲中透露了韩国棋手李世石去年输给阿尔法狗的致命原因,他最后也提到了阿尔法狗即将迎战的中国棋手柯洁,他说,“柯洁也在网上和阿尔法狗对决过,比赛之后柯洁说人类已经研究围棋研究了几千年了,然而人工智能却告诉我们,我们甚至连其表皮都没揭开。异曲同工,柯洁提到了围棋的真理,我们在这里谈的是科学的真理。”
世界围棋冠军柯洁即将迎战阿尔法狗
澎湃新闻现场聆听了AlphaGo(阿尔法狗)之父在剑桥大学历时45分钟的演讲,干货满满,请不要漏掉任何一个细节:
非常感谢大家今天能够到场,今天,我将谈谈人工智能,以及DeepMind近期在做些什么,我把这场报告命名为“超越人类认知的极限”,我希望到了报告结束的时候,大家都清晰了解我想传达的思想。
1. 你真的知道什么是人工智能吗?
对于不知道DeepMind公司的朋友,我做个简单介绍,我们是在2010年于伦敦成立了这家公司,在2014年我们被谷歌收购,希望借此加快我们人工智能技术的脚步。我们的使命是什么呢?我们的首要使命便是解决人工智能问题;一旦这个问题解决了,理论上任何问题都可以被解决。这就是我们的两大使命了,听起来可能有点狡猾,但是我们真的相信,如果人工智能最基本的问题都解决了的话,没有什么问题是困难的。
那么我们准备怎样实现这个目标呢?DeepMind现在在努力制造世界上第一台通用学习机,大体上学习可以分为两类:一种就是直接从输入和经验中学习,没有既定的程序或者规则可循,系统需要从原始数据自己进行学习;第二种学习系统就是通用学习系统,指的是一种算法可以用于不同的任务和领域,甚至是一些从未见过的全新领域。大家肯定会问,系统是怎么做到这一点的?
其实,人脑就是一个非常明显的例子,这是可能的,关键在于如何通过大量的数据资源,寻找到最合适的解决方式和算法。我们把这种系统叫做通用人工智能,来区别于如今我们当前大部分人在用的仅在某一领域发挥特长的狭义人工智能,这种狭义人工智能在过去的40-50年非常流行。
IBM 发明的深蓝系统(Deep Blue)就是一个很好的狭义人工智能的例子,他在上世纪90年代末期曾打败了国际象棋冠军加里·卡斯帕罗夫(Gary Kasporov) 。如今,我们到了人工智能的新的转折点,我们有着更加先进、更加匹配的技术。
1997年5月,IBM与世界国际象棋冠军加里·卡斯帕罗夫对决
2.如何让机器听从人类的命令?
大家可能想问机器是如何听从人类的命令的,其实并不是机器或者算法本身,而是一群聪明的编程者智慧的结晶。他们与每一位国际象棋大师对话,汲取他们的经验,把其转化成代码和规则,组建了人类最强的象棋大师团队。但是这样的系统仅限于象棋,不能用于其他游戏。对于新的游戏,你需要重新开始编程。在某种程度上,这些技术仍然不够完美,并不是传统意义上的完全人工智能,其中所缺失的就是普适性和学习性。我们想通过“增强学习”来解决这一难题。在这里我解释一下增强学习,我相信很多人都了解这个算法。
首先,想像一下有一个主体,在AI领域我们称我们的人工智能系统为主体,它需要了解自己所处的环境,并尽力找出自己要达到的目的。这里的环境可以指真实事件,可以是机器人,也可以是虚拟世界,比如游戏环境;主体通过两种方式与周围环境接触;它先通过观察熟悉环境,我们起初通过视觉,也可以通过听觉、触觉等,我们也在发展多感觉的系统;
第二个任务,就是在此基础上,建模并找出最佳选择。这可能涉及到对未来的预期,想像,以及假设检验。这个主体经常处在真实环境中,当时间节点到了的时候,系统需要输出当前找到的最佳方案。这个方案可能或多或少会改变所处环境,从而进一步驱动观察的结果,并反馈给主体。
简单来说,这就是增强学习的原则,示意图虽然简单,但是其中却涉及了极其复杂的算法和原理。如果我们能够解决大部分问题,我们就能够搭建普适人工智能。这是因为两个主要原因:首先,从数学角度来讲,我的合伙人,一名博士,他搭建了一个系统叫‘AI-XI’,用这个模型,他证明了在计算机硬件条件和时间无限的情况下,搭建一个普适人工智能,需要的信息。另外,从生物角度来讲,动物和人类等,人类的大脑是多巴胺控制的,它在执行增强学习的行为。因此,不论是从数学的角度,还是生物的角度,增强学习是一个有效的解决人工智能问题的工具。
3.为什么围棋是人工智能难解之谜?
接下来,我要主要讲讲我们最近的技术,那就是去年诞生的阿尔法狗;希望在座的大家了解这个游戏,并尝试玩玩,这是个非常棒的游戏。围棋使用方形格状棋盘及黑白二色圆形棋子进行对弈,棋盘上有纵横各19条直线将棋盘分成361个交叉点,棋子走在交叉点上,双方交替行棋,以围地多者为胜。围棋规则没有多复杂,我可以在五分钟之内教给大家。这张图展示的就是一局已结束,整个棋盘基本布满棋子,然后数一下你的棋子圈出的空间以及对方棋子圈出的空间,谁的空间大,谁就获胜。在图示的这场势均力敌的比赛中,白棋一格之差险胜。