今日最新资讯
热门资讯
国内新闻
    松下12v75ah蓄电池临安价格低
    发布者:hongyu888  发布时间:2017-03-10 16:31:07  访问次数:

    松下12v75ah蓄电池临安价格低

     

      松下蓄电池技术参数    销售电话:13716679560    QQ:1009314387  张经理
    不同放电率实际容量
    20小时率:67.2Ah
    10小时率:65Ah
    5小时率:55.5Ah
    3小时率:48.9Ah
    1小时率:41.9Ah
    容量与温度的关系(10小时率)
    40℃(104℉):103%
    25℃(77℉):100%
    0℃(32℉):86%
    -15℃(5℉):65%
    在25℃(77℉)时完全充电的内阻:约6.4mΩ
    充电方法(恒压)
    循环:最大充电电流为16.25A
    充电电压14.5-15.0V/12V77℉(25℃)
    充电温度补偿电压 -24mV/℃
    浮充:最大充电电流为16.25A
    充电电压13.6-13.8V/12V77℉(25℃)
    充电温度补偿电压 -18mV/℃
    应用领域
    ● 安防系统
    ●UPS/EPS电源
    ● 应急照明系统
    ●电力、通讯系统

    松下12v75ah蓄电池临安价格低

     

     

    赛特电池北京销售公司---
    金牌产品、金牌品质 金牌代理、金牌服务
    认真对待每一个客户,认真对待每一个产品
    松下蓄电池深放电的危害是:如果对赛特蓄电池频繁的进行深放电,会使蓄电池内部硫酸铅发生变化,导致极板硫酸化,容量下降,电池落后,梅兰日兰蓄电池放电完毕后,其液面会降低,请不要在充电初期补充稀硫酸或纯水, 赛特蓄电池池严禁长期充电不足和亏电使用。因此,在任何时间都不要对蓄电池频繁的进行深度放电,所以,做好蓄电池的维护工作是非常重要的。 赛特蓄电池的寿命取决于电池的放电深度,放电深度越大,蓄电池的使用寿命就越短。
    以上是简单的介绍赛特蓄电池的基本维护

      在过去的几十年里,油价不断上涨,COz排放量也在增加,圣阳蓄电池严重影响着气候。如今发展“零排放”电动车就显得非常有意义,因为其低成本、高安全性和有效地回收基础(再生铅),所以VRLA仍然保持强劲的竞争实力,与镍电池、锂离子电池一起竞争轻型电动车市场,如电动自行车、电动摩托车等,特别对于低收入地方的消费者来说,铅酸电池因低廉的成本而更加具有竞争力。然而,由于电动汽车(HE)及插电式混合动力电动汽车的到来,铅酸电池成为被“抛弃”的竞争者,因为铅酸电池的比能太低,与理论比能之间存在巨大差距。
          理论比能有168W.h/kg,通常实际比能才有35W.h/kg,其主要原因是铅及铅组件的无效应用。铅占电池总重的67%,正负极板栅是最重的组件,板栅只是作为活物质的支撑件,以及充/放电过程传导电流与汇集电流的构件,这一构件占极板组成重量的33%~50%[活物质:板栅为(1:1)一(2:1),这主要取决于工艺特点],活物质的利用率对低型(矮型)电池而言,大致也只有40%~50%的铅或二氧化铅能转化为硫酸铅(10小时率放电),结果有65%一?5%的铅不能参与成能与储能的电化学反应,因此,铅酸电池能量密度的改进仍面临巨大的挑战。
        圣阳蓄电池过去二十余年里,许多研究者用不同型式的炭或泡沫炭企图代替传统的浇铸式板栅或冲压式板栅。
    ①皮特尔松(Peterson)等曾假设:叠片(单片)式玻璃态化炭可以作为板栅材料,但其概念未实际论证。
    ②克泽温斯基(Czerwinski)等报告过玻璃态化泡沫炭作为板栅材料,后来曾有人进一步将此材料用作板栅。
    ③克泽温斯基(Czerwinski)等人曾将玻璃态化炭板栅与铅板栅性能进行对比,并且用这两种板栅作为负极,涂布了负极铅膏,并对这两种负极板作对比,其结果是用玻璃态化炭作板栅的导电性良好,能够支撑充/放电C。/1h的电流(C。是极板或电池的额定容量)。
    ④克内依(Kelley)等人报道过铅酸电池泡沫炭板栅的制造工艺。并在申请专利中作了详细叙述,文献中没有更多公开的资料可查。
    ⑤陈艳等发表了一系列文章,报道了应用沥青基炭泡沫化后做成板栅,制成小型涂膏式正极与负极。
    ⑥詹阳益等研究过泡沫石墨电极,涂正极活物质与负极活物质,表明石墨泡沫材料有较好的导电与导热性能。
        泡沫板栅的主要成就是取得了巨大的表面积,但很可能减小了“丁”系数,所谓“广系数是指板栅的每一单位表面积上所载的活物质重量。因为在上述炭材料上的氢过电位相当高,以及在析氢过程中不会有破坏性的冲击炭的结构,不同形式的泡沫炭能用作没有形变的板栅材料。尽管如此,直接应用炭作为正极板栅材料直到目前为止几乎不可能。主要原因是炭表面薄层剥落的破坏性腐蚀,这里也发生氧的析出,析氧也以同样的方式(途径)在酸里、在中性介质里、在碱介质里有相似或相同的途径。在玻璃态化炭的表面用锌基(Zn80%,Snl4.5%,Cu5.5%)溶液处理,即表面是通过OH-自由基化学浸蚀,这样处理的结果是裸露的炭结构(泡沫、绕丝等)上填涂碱式硫酸铅铅膏,然后在正极板化成或者充电过程中,由于在炭表面上有氧析出过程发生,因此会逐渐地发生活物质从炭板栅上脱落或拆开。
           一般使用泡沫炭作为正极板栅材料的策略是将泡沫炭板栅进行电镀,圣阳蓄电池镀上锡—铅合金或纯铅,然后再将其涂成涂膏式极板,才经得起长时间的循环。这是由于铅金属裹附层非常类似于经典的铅酸电池板栅,作为防护层的作用还超过了炭。

     松下12v65ah蓄电池杭州价格低

     

    硫酸盐化现象是部分荷电状态下工作的电池最常见的失效模式。硫酸盐化现象是指电池在负极上形成硫酸铅及其蓄积,最终导致电池失效。
    关于硫酸铅蓄积的机理有这样的说法:铅酸电池正极当完全充电后,正极板栅上的物质主要是二氧化铅(Pb02),当放电时会发生下列反应:
    正极:PbO:+HSO了+3H十+2e-——,'PbS04+2H20(1—1)
    铅酸电池负极完全充电后,负极板栅覆盖的大部分是海绵状铅。当放电时则发生如下反应:
    负极:Pb+HSO了一,PbS04+H’+2e-(1—2)电池中的电解液(H2SO,)渗透在极板与隔板的孑L隙内,电液中的离子
    (HSO;-)参与式(1—1)和式(1—2)的反应。HSO了参与正极、负极的放电反应,且可以在紧靠极板的部位离开,参加负极放电反应会产生质子(H’)而且在正极上放电时消耗。这时便形成一个质子流,圣阳蓄电池在放电时从负极通过电液流向正极,外电路上便有电流通过。
    上述放电反应若是高率(大电流)进行,对于传统铅酸电池因极板相对较小的界面,扩散会很困难,且又发生在极板上部,这样会相对于板栅截面产生的电势不均匀分布,使其上部硫酸铅增多,因而使其性能变差。
    若电池使用方式是在部分荷电状态下,圣阳蓄电池在极板内界面往往有放电产物PbSO+存在。通常负极仅有约25%金属铅被利用。若在50%的荷电状态下,大概有12.5%的PBS()+存在于负极活物质中,加之放电产物(PbS04)的非均匀性分布,将影响到随后的再充电过程,再放电受到影响,充电电流又引起氢的析出。这又将更剧烈地加速PBS()d的蓄积,因PbS04蓄积增多,电池终将很快失效。
    铅酸电池正极,由于活物质表面积大,不会蓄积PbS04或很少聚积PbS04。
    负极上PBS()+积聚,不论是贫液式还是富液式的电池,通常不管何种使用方式[循环使用、固定(浮动)使用或部分荷电状态下使用]都将会在负极上产生PbSO+。因此,硫酸盐化现象一般是指在负极上PbS04积聚的现象。
    通过对电池放电后的负极上PbSO+晶体的考察,发现PbS04结晶液并没有太大差异。PBS()+晶体(粒子)大小,可通过扫描电镜分析(SEM)得出,如图1—l所示。
    PBS()+粒子大小与PbSO+在负极上的积累并无直接关系,只是有的PbS04粒子细而分布密,有的PbSO+粒子粗而分布稀松。
    硫酸铅晶体导电性很差,充电时,PbS04还原为Pb的反应非常缓慢。当充人电量的相对理论容量的400%时,PbSO+极化仅有35%为Pb,而且这一还原反应只沿板栅—活物质界面进行,离开板栅较远处的活物质,只有少部分PbS04能接受充电,且极化相当缓慢。
    当负极活物质里存在炭时,情况就不一样了,炭粒子介入PbS04晶体粒子之间,就能形成一个导电网络,伴生在PbS04晶体内,导致负极板充电性能大大改善。
    炭的添加改善了PbS04的还原,炭粒子越小,PbS04的还原作用就进行得越顺利。不论炭离子的粗与细,都存在炭粒子与PbS04粒子间的体积接触,这样就能阻止PBS()d累积。这些炭的积极作用都是因为在PbS04粒子上形成一个导电网(图1—2)。
    炭分布在PbSO+晶体之间,并与PbSO‘粒子有体积接触。圣阳蓄电池导电炭粒子介入PbSO+晶体之间,既增加导电性,又将保持最大表面积。因此炭粒子的存在对PbSOd晶体逐渐长大造成障碍,使PbS04晶体长大受到束缚。这一可能的机理,是借助于Ti02(二氧化钛)粒子代替炭粒子所提供的相同性能的结果,炭粒子与二氧化钛粒子有相同的效应,因为它们都以相同的方式制约PbS04晶体的生长。
    铅酸电池制作过程有严格的工艺要求,正负极活物质中的添加剂用量,几乎都有各自的规定。在负极活物质中通常添加0.2%~o.9%的BAS()4。硫酸钡这种物质能为PbSO+结晶提供大量的成核中心,并使其晶体长大。BaS04与PBS()+有相同的晶型,成核中心多,晶体形成量也多,这样可以增大放电产物(PBS()+)的表面积,从而在再充电时,有助于充电接收的改善。BaS04的这一成核中心作用是肯定无疑的,炭粒子或许也有此类作用。不过却很少被人们接受,因为炭没有任何类似BaSO,的结构,同时也没有外延生长的过程。或许,炭是通过一条完全不同的途径实现成核作用的。

     

免责声明:焊材网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。联系电话:0571-87774297。
0571-87774297